Friday, June 3, 2011

Mengenal Teknologi GPS

Global Positioning System saat ini mulai bisa digunakan oleh kalangan sipil. Sebelumnya GPS adalah teknologi eksklusif yang hanya digunakan kalangan militer. GPS terdiri dari 3 bagian, bagian space yang mengatur konstelasi satelit, bagian control yang memantau dan mengatur orbit serta mengirimkan data, dan user sebagai pengguna GPS. GPS dirancang dan dikendalikan oleh Departemen Pertahanan Amerika yang kini bisa dinikmati oleh publik.

Perangkat GPS yang kita kenal seperti telepon selular atau PDA adalah sebuah GPS receiver. GPS receiver bekerja menerima sinyal dari satelit GPS. Satelit ini cukup banyak yang mengorbit di Medium Earth Orbit (MEO), pada ketinggian 1.400km (Low Earth Orbit – LEO) hingga 36.000km (Geostationer Earth Orbit – GEO). Kumpulan satelit GPS dikenal sebagai konstelasi satelit GPS, saat ini sudah lebih dari 24 satelit mengorbit di atas bumi dalam 6 bidang orbital plane (tidak hanya mengorbit sejajar dengan equator).
Satelit GPS pertama kali diluncurkan pada tahun 1978 dan mengorbit pada ketinggian 20.200km dan yang mutakhir (satelit GPS ke-52) diluncurkan 6 November tahun lalu. Satelit GPS tidak bersifat geostasioner –posisi relatif tetap pada garis ekuator, mengorbit satu bidang dengan putaran bumi– seperti satelit yang kita pakai untuk komunikasi internet dan siaran televisi, namn mengorbit dua kali dalam satu hari (kecepatan linearnya mungkin sama dengan kecepatan linear satelit geostasioner, tetapi karena orbitnya lebih rendah bisa mengelilingi bumi dua kali dalam 24 jam, bandingkan dengan kecepatan linear satelit LEO yaitu 8km perdetik, tentunya kecepatan linear satelit MEO lebih tinggi).
Seluruh satelit GPS mengorbit sambil mem-broadcast sinyal ke bumi. Sinyal yang dikirimkan adalah waktu atom epoch, koordinat satelit, inklinasi, kecepatan orbit dan lain sebagainya yang berguna bagi GPS receiver dalam menentukan posisi secara presisi. Sebuah GPS receiver bisa menentukan posisi koordinat lintang/bujur serta elevasi di atas permukaan laut secara tepat apabila menerima sinyal dari empat satelit GPS, jika hanya tiga sinyal yang didapat maka elevasi tidak akan akurat.
Setiap satelit mem-broadcast sinyal yang dibedakan dengan kode CDMA dan perbedaan perioda waktu pada frekuensi yang sama. GPS receiver mengkalkulasi 4 sinyal satelit yang didapat dengan database internal yang sudah terstandar tersedia. Elevasi bisa ditentukan akibat perhitungan delay setiap sinyal dari setiap satelit, delay ini kemudian dianggap sebagai jarak (range), disebut kemudian sebagai pseudorange. Ketika GPS receiver menerima 4 sinyal satelit maka pada saat itu posisi GPS receiver menjadi irisan empat garis sinyal satelit, dari sinilah posisi presisi GPS receiver bisa ditentukan, yaitu koordinat Lintang, Bujur dan Elevasi. Referensi waktu pada GPS receiver tidak harus akurat, cukup dengan tingkat akurasi dalam jangka yang pendek (misalnya cukup dalam hitungan menit) karena untuk selanjutnya referensi waktu akan didapatkan dari sinyal satelit, yang merupakan waktu atom, atomic clock.
Penentuan posisi GPS pun tak luput dari faktor kesalahan, kesalahan tersebut bisa timbul dari:
  1. Referensi waktu, untuk ketepatan minimal 4 sinyal satelit harus didapat.
  2. Ionosfer, kondisi cuaca memengaruhi delaynya waktu penerimaan sinyal, sebagai koreksi satelit mengirimkan sinyal lain pada frekuensi yang berbeda, sebagai komparasi perhitungan untuk mencapai presisi.
  3. Multipath, GPS receiver tidak hanya menerima sinyal dari satelit tapi bisa saja dari pantulan, dari perangkat lain di daratan dan sebagainya. GPS mengirimkan sinyal pada frekuensi L1 (1575, 42MHz), L2 (1227, 60MHz) yang dipakai untuk koreksi karena ionosfer, L3 (1381, 05MHz), L4 (1841, 40MHz) dan L5 (1176, 45MHz).
  4. Selective Availability, awalnya kalangan sipil tidak bisa menangkap semua sinyal GPS namun setelah Bill Clinton membuka hak pemakaian GPS ini maka kalangan sipil bisa lebih mendapatkan kepresisian posisi GPS.
Ke depan mungkin perangkat telepon selular akan dilengkapi GPS dan dibuat massal, sehingga pengguna dan operator mampu menjejak posisi. Salah satu kelemahan dasar GPS adalah receiver harus berada di ruang terbuka. Mungkin juga suatu saat BTS selular GSM dan CDMA bisa berfungsi sebagai relay satelit GPS, sehingga di dalam ruangan atau di basement posisi bisa ditentukan secara tepat.
Kemampuan GPS
Beberapa kemampuan GPS  antara lain dapat memberikan informasi tentang posisi, kecepatan, dan waktu secara cepat, akurat, murah, dimana saja di bumi ini tanpa tergantung cuaca. Hal yang perlu dicatat bahwa GPS adalah satu-satunya sistem navigasi ataupun sistem penentuan posisi dalam beberapa abad ini yang memiliki kemampuan handal seperti itu. Ketelitian dari GPS dapat mencapai beberapa mm untuk ketelitian posisinya, beberapa cm/s untuk ketelitian kecepatannya dan beberapa nanodetik untuk ketelitian waktunya. Ketelitian posisi yang diperoleh akan tergantung pada beberapa faktor yaitu metode penentuan posisi, geometri satelit, tingkat ketelitian data, dan metode pengolahan datanya.
Secara umum produk dari GPS adalah posisi, kecepatan, dan waktu. Selain itu ada beberapa produk lainnya seperti percepatan, azimuth, parameter attitude, TEC (Total Electron Content), WVC (Water Vapour Content), Polar motion parameters, serta beberapa produk yang perlu dikombinasikan dengan informasi eksternal dari sistem lain, produknya antara lain tinggi ortometrik, undulasi geoid, dan defleksi vertikal.
Satelit GPS dapat dianalogikan sebagai stasiun radio angkasa, yang diperlengkapi dengan antena-antena untuk mengirim dan menerima sinyal –sinyal gelombang. Sinyal-sinyal ini selanjutnya diterima oleh receiver GPS di/dekat permukaan bumi, dan digunakan untuk menentukan informasi posisi, kecepatan, maupun waktu. Selain itu satelit GPS juga dilengkapi dengan peralatan untuk mengontrol attitude satelit. Satelit-satelit GPS dapat dibagi atas beberapa generasi yaitu ; blok I, blok II, blok IIA, blok IIR dan blok IIF. Hingga april 1999 ada 8 satelit blok II, 18 satelit blok II A dan 1 satelit blok II R yang operasional. Secara umum segmen sistem kontrol berfungsi mengontrol dan memantau operasional satelit dan memastikan bahwa satelit berfungsi sebagaimana mestinya
Segmen pengguna terdiri dari para pengguna satelit GPS di manapun berada. Dalam hal ini alat penerima sinyal GPS ( GPS receiver ) diperlukan  untuk menerima dan memproses sinyal -sinyal dari satelit GPS untuk digunakan dalam penentuan posisi, kecepatan dan waktu. Komponen utama dari suatu receiver GPS secara umum adalah antena dengan pre-amplifier, bagian RF dengan pengidentifikasi sinyal dan pemroses sinyal, pemroses mikro untuk pengontrolan receiver, data sampling dan pemroses data ( solusi navigasi ), osilator presisi , catu daya, unit perintah dan tampilan, dan memori serta perekam data.
Prinsip penentuan posisi dengan GPS
Prinsip penentuan posisi dengan GPS yaitu menggunakan metode reseksi jarak, dimana pengukuran jarak dilakukan secara simultan ke beberapa satelit yang telah diketahui koordinatnya. Pada pengukuran GPS, setiap epoknya memiliki empat parameter yang harus ditentukan : yaitu 3 parameter koordinat X,Y,Z atau L,B,h dan satu parameter kesalahan waktu akibat ketidaksinkronan jam osilator di satelit dengan jam di receiver GPS. Oleh karena diperlukan minimal pengukuran jarak ke empat satelit.
Tipe alat (Receiver ) GPS
Ada 3 macam tipe alat GPS, dengan masing-masing memberikan tingkat ketelitian (posisi) yang berbeda-beda.  Tipe alat GPS pertama adalah tipe Navigasi (Handheld, Handy GPS). Tipe nagivasi harganya cukup murah, sekitar 1 – 4 juta rupiah, namun ketelitian posisi yang diberikan saat ini baru dapat mencapai 3 sampai 6 meter.  Tipe alat  yang kedua adalah tipe geodetik single frekuensi (tipe pemetaan), yang biasa digunakan dalam survey dan pemetaan yang membutuhkan ketelitian posisi sekitar sentimeter sampai dengan beberapa desimeter. Tipe terakhir adalah tipe Geodetik dual frekuensi yang dapat memberikan ketelitian posisi hingga mencapai milimeter. Tipe ini biasa digunakan untuk aplikasi precise positioning seperti pembangunan jaring titik kontrol, survey deformasi, dan geodinamika.  Harga receiver tipe geodetik cukup mahal, mencapai ratusan juta rupiah untuk 1 unitnya.
Sinyal dan Bias pada GPS
GPS memancarkan dua sinyal yaitu frekuensi  L1 (1575.42 MHz) dan L2 (1227.60 MHz). Sinyal L1 dimodulasikan dengan dua sinyal pseudo-random yaitu kode P (Protected) dan kode C/A (coarse/aquisition). Sinyal L2 hanya membawa kode P. Setiap satelit mentransmisikan kode yang unik sehingga penerima (receiver GPS) dapat mengidentifikasi sinyal dari setiap satelit. Pada saat fitur ”Anti-Spoofing” diaktifkan, maka kode P akan dienkripsi dan selanjutnya dikenal sebagai kode P(Y) atau kode Y.
Ketika sinyal melalui lapisan atmosfer, maka sinyal tersebut akan terganggu oleh konten dari atmosfer tersebut. Besarnya gangguan di sebut bias.  Bias sinyal yang ada utamanya terdiri dari 2 macam yaitu bias ionosfer dan bias troposfer.  Bias ini harus diperhitungkan (dimodelkan atau diestimasi atau melakukan teknik differencing untuk metode diferensial dengan jarak baseline yang tidak terlalu panjang) untuk mendapatkan solusi akhir koordinat dengan ketelitian yang baik.  Apabila bias diabaikan maka dapat memberikan kesalahan posisi sampai dengan orde meter.
Error Source pada GPS
Pada sistem GPS terdapat beberapa kesalahan komponen sistem yang akan mempengaruhi ketelitian hasil posisi yang diperoleh.  Kesalahan-kesalahan tersebut contohnya kesalahan orbit satelit, kesalahan jam satelit, kesalahan jam receiver, kesalahan pusat fase antena, dan multipath. Hal-hal lainnya juga ada yang mengiringi kesalahan sistem seperti efek imaging, dan noise.   Kesalahan ini dapat dieliminir salah satunya dengan menggunakan teknik differencing data.
Metoda penentuan posisi dengan GPS
Metoda penentuan posisi dengan GPS pertama-tama terbagi dua, yaitu metoda absolut, dan metoda diferensial.  Masing-masing metoda kemudian dapat dilakukan dengan cara real time dan atau post-processing. Apabila obyek yang ditentukan posisinya diam maka metodenya disebut Statik.  Sebaliknya apabila obyek yang ditentukan posisinya bergerak, maka metodenya disebut kinematik.  Selanjutnya lebih detail lagi kita akan menemukan metoda-metoda seperti SPP, DGPS, RTK, Survei GPS, Rapid statik, pseudo kinematik, dan stop and go, serta masih ada beberapa metode lainnya.
Ketelitian Posisi yang diperoleh dari Sistem GPS
Untuk aplikasi sipil, GPS memberikan nilai ketelitian posisi dalam spektrum yang cukup luas, mulai dari meter sampai dengan milimeter.  Sebelum mei 2000 (SA on) ketelitian posisi GPS metode absolut dengan data psedorange mencapai 30 – 100 meter.  Kemudian setelah SA off ketelitian membaik menjadi 3 – 6 meter.  Sementara itu Teknik DGPS memberikan ketelitian 1-2 meter, dan teknik RTK memberikan ketelitian 1-5 sentimeter.  Untuk posisi dengan ketelitian milimeter diberikan oleh teknik survai GPS dengan peralatan GPS tipe geodetik dual frekuensi dan strategi pengolahan data tertentu.
Aplikasi-aplikasi Teknologi GPS
GPS (Global Positioning System) adalah sistem satelit navigasi yang paling populer dan paling banyak diaplikasikan di dunia pada saat ini, baik di darat, laut, udara, maupun angkasa. Disamping aplikasi-aplikasi militer, bidang-bidang aplikasi GPS yang cukup marak saat ini antara lain meliputi survai pemetaan, geodinamika, geodesi, geologi, geofisik, transportasi dan navigasi, pemantauan deformasi, pertanian, kehutanan, dan bahkan juga bidang olahraga dan rekreasi. Di Indonesia sendiri penggunaan GPS sudah dimulai sejak beberapa tahun yang lalu dan terus berkembang sampai saat ini baik dalam volume maupun jenis aplikasinya.

sumber:http://www.smp1bojonegoro.net/main/?p=147

No comments:

Post a Comment